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A CHARACTERIZATION OF 
VECTOR MEASURE GAMES IN pNA* 

BY 

YAIR TAUMAN 

ABSTRACr 

We give a complete characterization of games in pNA of the form f o/~ (where 
p, is a vector of finite number of non-atomic probability measures, and f is a real 
valued function on the range of/z with f(0) = 0). Specifically, we show that f o/z 
is in pNA iff "f  is continuous at/z" (the definition of the latter is given in the 
paper). 

1. Introduction 

We begin with a few definitions, t aken  f rom A u m a n n  and Shapley's  book  [2]. 

Let  (I, qg) be a measurable  space which is isomorphic  to ([0, 1], ~ )  (the unit 

interval with its Borel  subsets). A set function (or game v) is a real valued 

function on ~ such that  v ( O ) =  0. For  each game v define II v ling by II v IIBv = 

supl I v Iln, where  the sup ranges over  all chains [ l  of the form f 1 : 0  = So _C $1 _C 

�9 . .  C S~ = I, Si E ~ and IIv I[~ = E~'21 I v(Si§ - v(S~)l. D e n o t e  by B V  the set of 

all games v with IIv IIBv < ~ - ( B V ,  II IIBv)is a norm space (even Banach one). 

D eno t e  by NA the set of all non-atomic  measures  on (I, c~), by NA 1 the set of all 

probabil i ty measures  in NA, and by pNA the closed linear subspace of B V  
spanned by all powers of NA 1 measures.  

The  space pNA plays a central  role in the theory  of non-a tomic  games. In [2], 

A u m a n n  and Shapley proved  the existence of a unique value on pNA and 

presented  a formula which enables us to compute  the value for games in pNA of 

the form f o/x, whe re /x  is a finite vector  of NA measures,  and f is a real function 

defined on the range o f /x ,  with f ( 0 ) =  0. The re fo re  it is natural  to ask which 

games of the form f o/z are in pNA ? 
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Another motivation for characterizing the games f o ~  in p N A  arises from 

market games. Those games were first treated deeply by Aumann and Shapley in 

Chapter 6 (An  Application of Economic Equilibrium) of [2], and then by 

Aumann and Kurz [1], by S. Hart [5] and by others. The prominence of market 

games in p N A  is illustrated by the fact that every such game has a unique 

member in the core which coincides with the value of v and  with the unique 

competitive payoff distribution (see [2, proposition 32.3], p. 186). 

In fact, the games of the form f o/~, where /z is a vector of finitely many 

measures in NA,  and f is continuous, concave and homogeneous of degree 1 on 

the range of/~, are the market games of finite type where the utility functions are 

not necessarily differentiable. Therefore a characterization of games f o/~ in 

p N A  leads to a characterization of all market games in p N A  of finite type. 

A characterization for the case where/z is a scalar measure in N A  1 is given in 

[2]: 

THEOREM C [2, p. 25]. Let I~ U N A  1 and let f be a real function on [0, 1] with 

f(O) = O. Then f o ix is in p N A  if and only if f is absolutely continuous on [0, 1]. 

A characterization for the case where p. is a scalar signed measure in N A  has 

been given by E. Kohlberg [6]. He proved the following 

THEOREM. Let lz be in N A  with range [ - a, b ] where - a < 0 < b ; let f be a 

real function on [ - a, b ] with f(O) = O. Let g be the function defined for each x ~ y 

by 

g(x, y) = (x + a)(y - b) f ( y ) - f ( x )  
y - - x  

Then f ~ is in p N A  if and only if f is continuously differentiable on the open 

interval ( - a , b ) ,  g(x,y)---~0 as x - - * - a  and y---~b. 

In the case where ~ is a finite vector of measures in N A  ~ no characterization 

has heretofore been known. In [2] the authors introduce two sufficient conditions 

(neither of them necessary) and one necessary condition (which is not sufficient) 

for f o/z to be in pNA.  The sufficient conditions are 

TrmOREM B [2, p. 23]. f o Iz is in p N A  if f is continuously differentiable on the 

range of I~, and f(O) = O. 

PROPOSITION 10.17 [2, p. 92]. f otz is in p N A  if f is a continuous and 

non-decreasing function in R ~ with f (O) = O, and for each 1 <= i <= n the derivative 

Of / dx~ exists and is continuous whenever x~ > O. 
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The necessary condition, which follows from proposition 24.1 of [2] (p. 157), is 

as follows: 

THEOaEM. If f olz is in pNA, then almost everywhere along the diagonal 
[tz(0),p.(I)], f has, for each S �9 ~, a derivative in the direction of tz(S). 

In this paper we introduce a complete characterization of games f o/z (/~ is a 

vector of finitely many measures in NA ') in pNA. For that purpose we need a 

few more definitions. 

Define a norm I1 on the linear space NA m (the set of all vectors of N A  
measures having m components) by 

i = l  

Let /z be in N A ' .  Denote  by R(/z)  the range of /z ,  i.e., 

R ( ~ ) = { ~ ( S ) I  S �9 ~}. 

Define BOx ) and B0x, e) for each e > 0  by 

S(I.~) = {v �9 N A  ~ ] R ( v )  = R (/z)}, 

and 

B(be, E) = {v �9 B( )I - II- < e}. 

Fix /z in (NA')  m, and fix a real function f on R(p.)  with f ( 0 ) = 0 .  Define an 

operator TI :(B(/x),ll II=)---~(BV, II IIBv) by 

T,(O=fo . 

DEFINITION 1. We will say that " f  is continuous a t / z "  if T 1 is continuous at 
/x. In other words " f  is continuous a t / z "  if for each e > 0, there exists 8 > 0 such 

that 

v �9 B(/z, 8) ~ IIf ot~ - f o   llBv < ~. 

We are ready to state our main result. 

THEOREM. A necessary and sufficient condition/or/o ~ to be in pNA is that f is 

continuous at I~. 

In the course of the proof of the theorem two other properties of vector 

measure games in pNA are established: 
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PROPERTY I. If f o/~ is in pNA then there exists a sequence of polynomials 

(P,):=I, all of them on R" ,  such that lip. ~ 1 7 6  Ibv ,_Z 0. 

PROPERTY II. If f o/z is in pNA then f o r  E pNA for each v EB(/z) .  

(Therefore Tr is continuous at each point of B (/z).) 

2. The proof of the theorem 

We will first prove the theorem for the case where the range of/.~, R (/z), has 

full dimension, i.e., where R (g)  contains a ball in R m. (Recall that/z E (NA 1),, 

and f : R (/z)---~ R t with f(0) = 0, are fixed.) 

a. The condition is su~cient 

Let us start with the idea of the proof. Assuming that f is continuous at/x, we 

will prove that f o g  is in pNA by showing that one can approximate f o/x by 

games g o/z where g is continuously differentiable on the range R (/z) of/z and 

g(O) -- O. For that purpose we will smooth f by averaging it, at each point x (in 

R (it)), over a small cube close to x. More precisely, for each 0 < 8 < 1 and 

x E R (p.), define f8 (x) by 

(*) f'(x)=l f, cf((1-8)x f, cf(Sy)dX(y) 
where C is a cube of volume a m, contained in the interior of R(/z), and A is the 

Lebesgue measure on R m. (We subtract the term (1 /a ' ) f ,~c f (@)dX (y) in the 

definition of f~ to obtain f~(0)= 0.) Of course we first have to justify the 

definition of f8 by proving that the above integrals exist. Indeed, we prove that f 

is continuous in the interior of R(/z) (Lemma 4). Then we prove that f8 is 

continuously differentiable on R (/z) (Lemma 7); and hence from theorem B of 
[2] we have that fs  o lz ~ pNA. Now, we use Lemmas 8 and 9 below, and the fact 

that f is continuous at/~, to prove that IIf ' o - f o ~ IIBv--, 0 as 8 ---> 0. Together 

with the closedness of pNA (in the variation norm) we then obtain that f o/~ is in 

pNA, as claimed. 

LEMMA 2. For a given 71 in (NA ~)" and x in the relative interior of R(~l), the 

following holds: For each e > 0 there exists 8 > 0 such that for each y ~ R (it) 

with" If y - x  II < ~, there are T and S in ~ such that 

,7(S)=x, ,7(T)=y, IIn(SAZ)ll<e. 

* In the variation norm. 
" On an Euclidean space, II I1 denotes the Euclidean norm. 
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PROOF. First we will prove the lemma for the case where R(r / )  has full 

dimension. Let  e > 0 be given and let M be a real number satisfying II z 11 --< M for 

each z E R (r/). There exists e~ > 0 such that the ball B(x, e~) (with center x and 

radius et) is contained in R(7/). W.l.o.g. (without loss of generality) we can 

assume that II x II--< 1. 

(a) For each e2, 0 < e2 < el and for each z E E ~" with II z II < e2 there exists xl 

and y~ in (ed2el)R(~l) for which z = y l -  x~. Figure 1 illustrates the situation. A 

and B are the intersection points of OB(x, e~) with the line connecting x and 

x + z. The points x~ and y~ are on the intervals [0, A]  and [0, B],  respectively, 

and the line containing the interval [x~,y~] is parallel to the one containing 

[A, B]. If t =  ][z 1[/2el then x l = t .  A and y l = tB. Therefore  x~ and y l are in 

([[zll/2e,)R(n); and since Ilz I[ < e2, x, and y~ are in (ez/2eOR(rl). 

^ B 

0 

Fig. 1. 

(b) Obviously, for each e4 > 0 sufficiently small there exists ~3 > 0 such that 

B(x, e3)C ( 1 -  e,)R(iz). This, of course, remains true if we replace e3 by any 

smaller positive number. 

(c) Let  us choose ~'3 > 0 and e4 > 0 such that (b) holds and e3/e, + (1 - e,) =< 1. 

(d) Choose 8, 0 <  8 <min(e3,  e .  edM) small enough such that for each 
z ~ R  m 

R(r/) IIz I1< 

Let y E B(x, 8). Denote z = y - x. From (a) and (c) there exist xl and y, in 

(8/2et)R(71) for which z = y ~ - x l .  ( d ) i m p l i e s  that IIx,ll< 3 and hence 

x - Xl E B(x, e3) and so by (b) x - x, E (1 - e4)R (~). Therefore  there is & E c~ 

such that 
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(e) f3 = (1 - e4)" )r ~ f , f 3d~  = x - xl. (Here a's~ is the characteristic function 

of $3.) Moreover, since xl and yt are in (8/2e1). R (r/) there are measurable sets 

S~ and $2 with 

(f) f2 = (8/2el)'Xs~ ~ fff2d~7 = x~ and 

(g) f ,  = (8 /2e , ) 'Xs ,  ~ f , f ,  dn  = y,. 

From (c), and the choice of 8, we obtain 

(h) 0--<f3 <=f3+f, <=f3+f2+f, <= al2e, + ,~/2e, + (1 - e , )_-  < 1. 

To complete the proof of Lemma 2 we need now the following lemma: 

LEMMA 3. Let  "0 be in N A  " ; and let g~, g2 , . . . ,  g~ be n measurable functions 

defined on I, satisfying 

(1) 0 =< g~ (t) =< 1 for each 1 <= i <= n and each t E I, 

(2) g~=<g2=<'"=g.. 

Then, there are n measurable sets T~, . . ., Tn with 7"1 C T2 C . . . C_ T, such that 

rl(T,)  = f ,  g,d*l, i = 1 , . . . ,  n. 

Lemma 3 is an immediate consequence of the Dvoretsky-Wald-Wolfowitz 

theorem [4]. For a proof see lemma 44.1 of [2, p. 259]. 
From Lemma 3 and (h) we deduce the existence of measurable sets T~, T2 and 

T3 with T3 C_ ~l ~ T2 and 

n(T3) = f ,  f3d~ = x - x,, 

n ( T , ) =  f ,  ( f 3 + f , ) d T / = x - x , + y , ,  

r /(T2)= ~ ( f3+f ,+f2)dTl  = x  +yl .  
./t 

Define T and S by 

n ( s )  = x 

Then 

T = T,, S = T3 U (T2\ T,). 

17(T) = X - x x + y ,  = x + z = y, 

and " 0 ( T A S ) =  r~(T~\T3)+~(T2\T~) .  
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But 

and 
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II~(T~\T3)II = Ily~ll< ~-~. M < ~  2e~ 2 

1t,7(r2\ T,)Jl = II x,  II < 2" 

Hence IIn(rA s)ll< ~ and the proof of Lemma 2 is completed for the case 
where ~/ has full dimension. 

Assume now that l is the dimension of R( t / )  and l < m. Since 0 E R( t / )  there 

is a linear mapping ~, from R m onto R ~, which is one to one on the linear space 

M(a~) spanned by R(ag). Let z = ~b line,). Define a vector measure ~ of 

dimension l by ~?(S) = r(~(S)) for each S in ~. Let x be in the relative interior 

of R(r/), then ~'x is in IntR(~:) (the interior of R(~:)). Now let e >0 .  r -1 is 

continuous on R (~), hence, there is /3 > 0 s.t. for each z E R (~) 

(3) IIz I1</3 ~ II~-~z II < ~. 

Using the first part of the proof, we have ~ > 0  s.t. for each y ~ R ( r l )  with 

Ilry- rx II < 8 there are T and S in qg for which 

rx=((S),  z y = ~ ( T )  and II~(S/XT)II</3, 

o r  

x=tl(S),  y = T / ( T )  and II~(SZXT)II</3. 

Therefore (3) implies I[ t/(S A T)I[ < ~, and the proof of Lemma 2 is complete. 

LEMMA 4. [ is continuous in Int R (/~). 

PROOF. Let e >0 .  From the continuity of f at /~, there is /3 > 0  s.t. 
v E B (/~,/3) implies 

(4) IIf~ - f ~  ~IIB,, < e. 

Let x be in IntR(/~).  By Lemma 2 there is 8 > 0  s.t. for y E R ( / z )  with 

0 < I[ Y - x I] < 8 there are measurable sets T and S with 

x=l~(S), y - - / ~ ( T )  and O<ll~(sA r)ll</3/2m. 

Let us fix now the vector y and the corresponding two sets S and T. W.l.o.g. we 

can assume that y # / z ( I ) .  Denote /2 =ET'=~/.L~ where p. = ( / z , , . . . , / z m ) a n d  

consider two cases. 
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I. / 2 ( T \ S ) = O .  In this case we choose SoE ~g such that 

SoC( I \T ) \S ,  /X(So)=O and 

So and S \ T have the same cardinality. 

We use now the following theorem: 

THEOREM 5. Any uncountable Borel subset of any complete separable metric 
space, when considered as a measurable space (with the cr-field of the Borel 
subsets), is isomorphic to ([0,1], ~ ) ,  

(For a proof, see Mackey [7].) Choose an automorphism 0 of (/, ca) s.t. 

OSo=SXT, O(S\T)=So and 

Ox = x for each x ~ So O (S \ T). 

Define a vector measure v by v = 0 */z (i.e., v(S) = tz(OS) for each S E ca). v is 

in B (/z) and 

II ~' - ~ II- -- ~ I1~,, - ~, IIBv = ~ II ~', - o �9 ~ liB,, 
i = l  i - I  

= s sup [I~,(A)-I~(OA)-~,(A~)+I~,(OA~)] 
i - 1  A 

where A"  is the complement of A (A E ca). From the definition of 0 we get 

I1~, - ~ II. = ~ sup [~, (A fq (S \ T ) ) -  ix, (OA N (S \ T)) 
i--1 A 

- /~ ,  (A" N (S \ T)) + p~ (8A" tq (S \ T))]. 

Hence 

II~ - ~ II- ~ ~ sup [~, (m n (S \ T)) + ~,  (0A" N (S \ T))] 
I--1 A 

i--I  

Therefore, by (4) we have Ilfot~ - f o  ~llBv < e, which implies that 

[ f ( Iz(r) ) -  f(Iz(S))l < e, 

o r  

I f ( y ) - f ( x )  1 < e. 
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The proof of the lemma for case I is thus complete. The case where/3, (S \ T) = 0 

is analogous. 

II. / 2 ( S \ T ) > 0  and / 2 ( T \ S ) > 0 .  Apply again Theorem 5 to get an 

automorphism 0 of (I, ~ )  satisfying 

O ( T \ S ) = S \ T ,  O ( S \ T ) = T \ S  and 

Ox = x for each x ~ S A T. 

The proof of Lemma 4 is completed now, in the same fashion as case I. 

DEFI~qITION 6. Let C be the cube in R m with center /z(I)]2 and side a 

defined by C = [ - a/2, a/2] r" +/z(I) /2,  where a is a small positive number for 

which C is contained in Int R (/.~). For each 0 < 8 < 1 and x E R (/x) define f8 (x) 

by 

1 �9 y)dA (y). <5) f,<x)= if ,of f ( ( 1 - 5 ) x + 8 ,  y)dA(y)-~-~- f ,  Ec f (3  

Notice that f~ is defined on an open neighborhood D of R (/~). Also notice that 

the two integrals in (5) are well defined; since f is continuous on Int R (/z) and for 

each x E R (p.) and 0 < 8 < 1 the cube (1 - 8)x + 8C is contained in Int R (/z). 

Obviously for each x E R (/~), fa (x) can be written as 

1 . r _lf  �9 . . |  | f ( z ) d z l . .  "dzm - a  ~ [ (6 .  y)dA (y). (6 ) f ' (x )  = a "  �9 8 3 J,,-,~,,+~(,r~-,~ J Ec 

Since ( 1 -  8)x + 6 .  C is contained in In tR(/z) ,  f8 has continuous partial 

derivatives at x. But this is the case for every x ~ R (/~), thus f~ is continuously 

differentiable on R(/z). '  Hence 

LEMMA 7. For each 0 < 8 < 1, fs  is continuously differentiable on R (lz ). 

Our next purpose is to prove that IIf  ~ - f o ~ liB,, ,0 .  For this we need the 
B.--,O 

following two lemmas. 

LEMMA 8. f iS continuous at 0 and lz (I). 

* The concept of continuous differentiability of a real function f, on a convex set X contained in 
R ' ,  is defined as follows (see [2, p. 22]): A vector z is said to be X admissible if z = x - y for some x 
and y in X. Let [ be a continuous real function on X. We shall say that f is continuously 
differentiable on X, if for each X admissible z there is a real function on X which equals the 
derivative d[(x + hz)/dh (this involves the assumption that the derivative exists) at each point x in 
the relative interior of X, and which is continuous at each point in X. 
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PROOF. Assume that xk --> 0 as k --~ % and Xk E R (/x) for each k. We choose 

Sk E cd s.t./z (S~) = Xk. Theorem 5 enables us to select Ak E cd with Ak n Sk ---- O 

and lX(Ak)= 0 together with automorphisms Ok for which 

OkSk = Ak, OkAk = Sk and 

Okx = x for each x ~ Ak U Sk. 

For each k, 0[/z E B(t t)  and - Ibv-- 0. (The proof is similar to the one 

given in Lemma 4.) Let e > 0. f is continuous at /z, hence for large k 

I1/o~ - f ~ <e ,  

therefore If(/x (Sk))- f(/~ (Ak))1< e, i.e., ]f(x~ )l < e. So f is continuous at 0. The 

continuity of f at/~ (I) is proved in a similar way. 

PROOF. 

such that 

LEMMA 9. Let ~1 E ( N A  ,)m and let S~, $2 be two measurable sets such that $1 

and I \ $2 are both uncountable sets and SI C_ $2. Then for each 0 < 8 < 1 and for 

each y ~ R ( 71) there is a vector measure ~1 y such that 

(7) r/' E B(r/, 2m8), 

(8) n'(S)  = (1-  8)n(S)+ @ foreachSE~withSic_SC_S2. 

Let A and B be two uncountable subsets of S~ and I \ $2 respectively 

(9) "0 (A) = 7/(B) = 0. 

Let y E R(T/). Choose Sy ~ ~ such that Sy and I \Sy  are both uncountable sets 
and 

(10) r/(S,) = y. 

Apply Theorem 5 to have an isomorphism 0 : A U B --~ I such that 

(11) OA = Sy and OB = I \ S , .  

For each 0 < 8 < I define the vector measure r/' by 

(12) 7 1 ' ( S ) = 8 ~ i ( O ( S A ( A  U B)))+ ( 1 -  8)a7(S), for each S E ~. 

Since for each T C A  U B  and each 7 " C I \ ( A  U B )  

"0'(T) = ~1(0T)  and r / ' (T)=(1-8)~l (7") ,  

we obtain R(~Y)= R(r/). Now by the equation 
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we have 

~ ' ( S ) -  rl(S) = O[rl(0(S 13 (A U B ) ) ) -  7/(8)] 

Finally, if S ~ ~ obeys $1C S _C S2 then by (10), (1I), and (12) 

~lY(S) = &I(O(S, f3 A ))+ (1 -8)~1 (S) 

= 8~1(0A)+ (1 - 8)rl(S) 

= 8 , 7 ( s , )  + (1 - 8 ) , 7 ( s )  = 8y + (1 - 8 ) n ( s ) .  

The proof of Lemma 9 is thus complete. 

LEMMA 10. For each e > 0 ,  there exists 0 < 8 o < I  s.t. for every 0 < 8 < 8 0  

IIf~ o ~ - f o ~ b , , <  e. 

PROOF. Let e > 0 be given. Because of the continuity of f at/~, there is r > 0 

s.t. for each v E B(/~, r) 

(13) IIfo ~, - f o  ,, IIBv < e/2. 

Let F~ be an arbitrary chain ~q : ~ = So C S~ C - .  �9 C S~ = I of measurable sets. 

W.l.o.g. we can assume that S~ and I\Sk-~ are uncountable. It is sufficient to 

prove that II/o/z _ f s  o /z l l ,<  e. For each 8, 0 <  8ScQjdo!. m and for each 

y ~ R(/z)  we have, according to Lemma 9, a vector measure /z  y in B(/z,2mS) 

s.t. 

(14) ( 1 - 8 ) / z ( S i ) +  8 .y  =/zY(S,), i = 1 , . . . , k - 1 .  

Since 0 < 2m8 < r we have by (13) 

(15) Ilfo~ - f o ~ '  liB,, < ~/2. 

On the other hand 

Ill ~ ~ ~ - f ~  ~ II. = ~ '  If* (~ (s,+,))-fO, (S/+l)) -f'$(~ (si)) "~- f(~.L(Si)) I 
i=O 

--< a---~ l f((1 - ~)/z(S,.,) + 8 .  y)- f ( t~(S,+,) )  
i = l  ~ C  

- f ( ( 1  - 8)iz(S,)+ 8 .  y)+fOz(S, ) ) l  dX (y). 

Thus by (14) 
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Ilf~ ~ - f~ 

i gf 
a m i=0 dy EC I f(/ 'L Y (S/+1)) --  f(~.l, (Si +1)) --  f(I,~ y ( S i ) )  -~ f ( I  .~ (Si ) )1  d)~ ( y )  

+a 1--~ f,~c If((1 - 8)/z (I1 + 8" y)-f(t~(I)lldA(y) 

The first summand is bounded by I[/o/~ - f o / z y  IIBv and according to (15) it is 

smaller than e/2. By Lemma 8 there exists 8,, 0 < 8 , < 1  s.t. for each 8, 

0 < 8 < 8 , ,  the last two summands are together smaller than el2. Define 

80 = min(81, r/2m) to complete the proof of Lemma 10. 

b. The condition is necessary 
As in the first part, we first start with the idea of the proof. Assume that f o/z is 

in pNA ; our purpose is to prove that f is continuous at/z. From the definition of 

pNA there are polynomials (p . )~ l  and vectors of NA ~ measures /z" s.t. 

lip. ~ -f~ as n tends to oo. Define 

1~" ={x E R((tz,/x")) [ t,(x)E C} 

where t,(x) is the projection of x on R(/z)  and C is defined as in Definition 6. 

On / ~  we choose probability measures A. and we define for each n and 

0 < 8 < 1, the function f~ on R(/.L) by 

= f , , . / ( ( ,  - + tl(y))dA. ( y ) -  t,(y))dA. (y). 

In fact, we will choose the A. in such a way that f~ is independent of n and thus 

we can denote f~ - ~ - f~ In order to prove that the above integrals are well defined 

we prove that f is continuous on Int R (g)  (Corollary 15). Then we conclude that 

f f  is continuously differentiable on R (/.~). Define for each n and 0 < 8 < 1 the 

function p~ on R( /z")  by 

p (x)=f, an p. ((1 - 8)x 

where h(y)  is the projection of y on R ( ~ " ) .  We prove (Lemma 19) that 

(16) IIp".o/x" - f" o/x Ilsv > 0 

uniformly in 0 < 8 < 1. In addition we prove (Lemma 20) that for each n 
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(17) I Ip .~176  ,0 ,  
5 ~ 0  

and thus (16), (17) and IIp. o ~ " - f o ~  II.v . _ ,  o imply 

IIf* o t ,  - f o t ,  llov , o .  
~ 0  

We can thus approach f o/z by f* o/x where f f  is continuously differentiable on 

R (p.). Using the fact that the polynomials, with m variables, are dense in* 

CI[R(~)]  we prove (Lemma 22) that one can approach fo /z  by g, o/x where 

(g,):=~ are polynomials on R " (and so Property I is proved). Now, based on the 

existence of such (g, o/z):=l we can complete the proof of the second part, as 

follows. 

LEMMA 11. A n y  polynomial  p on R "~ is continuous at lz. 

PROOF. It follows immediately from the fact that B V  with the variation norm 

is a Banach algebra (see proposition 4.5 of [2, p. 29]). 

LEMMA 12. Let  ~! E ( N A  ~)'~. Then, for each v ~ B(~I)  and  for each chain 12, 

12 : 0 = So C S~ C . . . C_ Sk = I o f  measurable sets there exists a chain 12", 12" : 0 = 

S* C S* C . . .  C_ S* = I o f  measurable sets s.t. for each i, 1 <~ i <~ m, 

~(s,) = ~(s*) .  

(Hence,  for  each v E B(~q), II/o ~ lily = II/o '7 I1-~.) 

The proof of this lemma is due to A. Neyman [8]. 

Now, assume that there are polynomials g, on R m with 

IIg. o ~ - f o t ,  ll~v ,0 .  

Then for a given e > 0 there is an N s.t. n > N implies 

(18) llg, o~ _ f o r e  II,v < e/3. 

By (18) and by Lemma 12, for each v EB( / z )  and for each n > N  

(19) i lgo ~ _ f o  ~ll,v < el3.  

Let n o > N  be fixed. By Lemma 11, there is 6 > 0  s.t. 

' CI[R(/.Q] is the set of all continuously differentiable functions / on R(/~), with the norm 

hltll~ = Iltllo + Y~ Ill, Iio 
i 

where f~ is Of/Ox, in IntR(/z), and is the appropriate continuous extension on the boundary, 
IlfUo = max.~R,~,lf(x)]. 
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(20) v 6~ BOx , 6) => IIg.oot~ - g . o  o vII.v < ~/3. 

Therefore by (18), (19) and (20), for any v in B(/~, 6) 

IIf~ - f ~  ~l l .v  <~ I l f ~  - g . , ~  II.v + IIg~,~ ~z -g .o  ~ vii . , ,  + 11 g.,, ~ v - f o  v][R~ 

4[ E, 

and the proof of the second part is completed. Notice that Property II follows 

immediately from (18). It remains now to prove the existence of (g , )L,  on R "  

with IIg. o ~ - f o ~  II.~--,0. 

DEFXNmON 13. A set function v is said to be absolutely continuous if there is 

a a E N A  ' s.t. for every e > 0 there is a 3 > 0 obeying for every chain fl and 

every subchain A of fl, II or IIA --< ~ ~ It v IIA --< ~ (in this case we write v <~ o'). The 

set of all absolutely continuous set functions in B V  is denoted by AC.  

LEMMA 14. Let ~ E ( N A  ~ )~ and let g be a real function on R ( ~ ). I f  g o ~ E A C 

then g is continuous in Rel Int R (~:) (the relative interior of R (~)). 

PROOF. Let x be in Rel lnt  R(~) .  g o~ E A C  implies the existence of a 

measure v E N A  ~ with g o sc <a v. Let e > 0 be given. There is an a > 0 s.t. for 

each subchain A 

Since x E R e l l n t R ( ~ )  and R(~:,u) is convex, there is x ,E[0 ,1 ]  for which 

s = (x ,x  0 is in Rel ln t  R(~, v). Applying Lemma 3, we have 6 > 0 s.t. for each 

)7 ~ R(~, ~) with []Y-~11 < 6 there are sets S and T in ~, such that 

g = (~, v ) (S) ,  )7 = (~, u ) (T )  and I1(~, O ( s / x  Z)ll < a. (22) 

Denote 

={)7 E R((;, v)111)7 -~11< 6}, 

and let P be the projection of R(~, v) on R ({). P(/d~) contains a neighborhood 

U~, of x (with radius 6 , ) in  R(O.  Hence, for each y E R(~) with [IY - x  II < & 

there is a )7 in P-~(y) r ~ and there are measurable sets S and T satisfying (22). 

Therefore 

(23) x = ~ ( S ) ,  y = ~ ( T )  and v ( S A T ) < a .  

Define now two subchains At and A~ by 

A , : S C _ S U T ,  A 2 : T C S U T ,  
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and replace A in (21) once by A, and once by A_,. Then together with (23) we have 

[ g(~:(S L3 T ) ) -  g(~:(S))[ < e/2, 

[g(~(S U T)) - g(~:(T))] < e/2. 

Hence, for each y E R ( f )  with [Jy - x [ [ <  8, 

[g (x ) -  g(y)] = I g ( f ( S ) ) -  g(~(T))[ 

-<-I g(~:(S))- g(~(S u T))I + I g(~:(S u r ) ) -  g(~:(Y))l 

< E .  

COROLLARY 15. The result of Lemma 14 is valid if we replace A C by pNA.  

PROOF. This is an immediate consequence of Lemma 14 above and of 

Corollary 5.3 of [2, p. 36] which asserts that pNA  C_ A C  

DEFINITION 16. For each subset S of any euclidean space we denote by h~ 

the Lebesgue measure on the linear manifold spanned by S. 

[.EMMA 17. Let A be a compact and convex subset of R" .  Let P be a projection 

of A on R i for I < m, and assume that he.~ (PA ) > O. Then, there is a probability 

measure v on A s.t. vP 'j is the normalized Lebesgue measure on PA. 

PROOF. For every x in PA denote 

A, = P  ' ({x})AA, hx = AA~(A,). 

If dim PA < dim A then, from the convexity of A, for almost every x in PA 

(with respect to ApA) & > 0. In this case we define a function f on A by: 

f ( a ) = { l / ~  a @ a ~  and hx > 0 ,  

a E A ,  and A~ =0 .  

It is easy to verify that f is hA integrable. Define now a measure v on A as 

follows: For every measurable subset S of A 

l Io v(S)  = heA (PA ) ~s f (a)dhA (a). 

v is a normalized measure and vP-' is the normalized Lebesgue measure on PA. 

In the case where dim PA = dim A, the measure v is simply defined by 

1 
X~(A) 
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The proof of the lemma is then complete. 
By Lemma 17, for each n there is a normalized measure A, defined on/~ ,  s.t. 

A,t ' is the normalized Lebesgue measure on C. (Recall that /~" ={x E 

R((p.,p.")) I t~(x)E C} where t,(x) is the projection of x on R(/z), C is a small 

cube in Int R(/z) of the form [ - a / 2 ,  a/2] m +/x(I) /2 and 

lip. o~"-f~ ,o.) 

For each n and 0 < 8 < 1 define on R (p.) a function f~ by 

f~(x) = f,~a f((1 - 8)x + 8.  t,(y))dXn ( y ) -  ~ ,~ .  f (8 .  t,(y))dX, (y). 

By Corollary 15, f~ is well defined. In fact, from the choice of ,~., f~ is 

independent of n since 

[~(x)-- ~y[ ,,,Ro~ [/((1 -8)x  + ,~. y ) - [ (8 .  y)]d,~.ti-I(y) 

and thus 

f 
(24) f~(x) -- Jy~c [/((1 - 8)x + 8.  y ) - f ( 8 -  y)]dA (y), 

where A is the Lebesgue measure on R".  We can then write f~ instead of f~. By 

(24) and by Lemma 7 we have now 

COROLLARY 18. For each 0 < 8 < 1, f~ is continuously differentiable on R (lz ). 

For every e > 0 there is an integer N s.t. for each n > N and LEMMA 19. 

0 < , 5 < 1  

PROOF. 

]If' otz -p~op ."  [[Bv < e. 

Let 0 < 8 < 1 be given. Let f~ be a chain 

f~:O=Soc_SlC_."c_Sk =L S , ~ .  

Following the definition of p~ we have 

(25) 

] [ f~~ # - P . ~  # " l [ , ,  

= 2 [f((1 -8 )~(S ,+ , )+8 . t , ( y ) ) -p . ( (1 -8 )~" ($ , , , )+8 . t~ (y ) )  
i ~ O  n 

- f ( (1  - 8 ) .  (S,)  + 8 .  t , (y ) )  + p~ ((1 - 8 ) ~ "  (S,)  + 8 .  t~(y))]d,~. (y) I. 
i 

I 
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For each y ~ / ~ "  there is a measurable set Ty with y = (/X,/x~)(Ty), and for each 

i, O<=i<=k-1,  

(1 - 8)Xs,§ + 8.  XT-, >= (1 - 8)Xs, + 8.  XT,. 

By Lemma 3, there is a subchain A 

A: T~ "y C_ T~." C_ . . . c T~." 

s.t. for each i, 0 ~ i = k, 

(/x,/X")(T, ~'') = (1 - 3)(/X,/X ")(S,)+ 3 .  (t,(y), tffy)). 

This together with (25) imply 

IIf'o/x -p ~ 

(26 )=  i~ l f,~R If(/x(T,:,))-p.(/x"(TL',))-f(/x(T~'O)+p.(/x"(T,'O)ldZo(y)[. 

The integrand on the right-hand side of (26) is bounded for each y ~/~" and 

0 <  3 < 1 by [[fo/x - p .  o/x" lily which tends to 0 as n---> oo. Hence the proof of 
the lemma is completed. 

LEMMA 20. For each n, [[p o/x,-p~o/x,l[Bv----~O. 

PROOF. For each n, x E R (/X ") and 0 < 8 < 1 

p~(x) = fy~a~ [p, ((1 - 3)x + 8 .  t : (y)) -p~ (3. t2(y))]dh~ (y). 

The integrand p , ( ( 1 - 3 ) x  + 3 �9 h ( y ) ) - p ,  (8 �9 h(y)) can also be written as 

~t p~( (1 -8)x )+3 .O, (2 (y ) ) ,  where Os,(t2(y)) is a polynomial in t2(y) with 

coefficients which are polynomials in x and 3. Hence 

Ps"(x)=P"((1- 8)x)+ 8 " f, a. O~(h(y))dh.(y). 

But q~(x)=-fy~R, Q~(h(y))dh~(y) is a polynomial in x and 8, and therefore 

p~(x) = p. ((1 - 3)x) + 8 .  q~(x). 

Since R (/X") is a compact set then 

IIG-p. l[ , 0  
sup 8 ~ 0  

o r  

Ilp~o/x- - p ,  o/x 

on R (/X") 

"11 , 0 .  
sup ~ ~ 0  
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Since for a fixed n, each pS.(x) (as a polynomial in x) has the same degree as 

p. (x) ,  and since on any finite-dimensional vector space all the norms are 

equivalent (here we consider the space of all polynomials q with the same 

number of variables as in P. and such that deg q = deg p.)  then 

l ipton" 

and the proof is complete. 

LEMMA 21. 

R (/Z ) s.t. 

" ~ 0  

For each k there is a continuously differentiable function gk on 

PROOF. S i n c e  

(27) lip. o/z. _ f o / z  [l~Jv 

by Lemma 20, for each n 

(28) I[P~.~ - P .  o/z"ll.v ~-.o' o. 

By Lemma 19 

(29) l [ f fo /z -p~.otz" l l .v  , 0  

By (27), (28) and (29) we get 

, 0 ,  
n ~  

uniformly in 0 < 6 < 1. 

(30) I[f ~ o/z - f  ~ II,,v 0. 

Since f f  is continuously ditterentiable on R(/Z) (Corollary 18), the proof is 

complete. 

LEMMA 22. For each k there is a polynomial q~ on R "~ s.t. 

]]qk ~ - f  ~ ]]Bv ------~ 0. 

PROOf. The space (C'(R(/Z)),II 11,) is denned in the previous footnote. 
Lemma 7.4 in [2, p. 42] asserts that the polynomials are dense in Ct(R  (/~)). (The 
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essence of the proof is given in Courant and Hilbert [3, p. 68].) Therefore, for 

each g E C' (R (/~)) there is a sequence of polynomials (q,)~=~ on R '" for which 

l lq . -g l l ,  , 0 .  

Inequality (7.5) of [2, p. 43] asserts that 

Itg ~ --<ttglt, ~ tz,(I) <-m "llgll,- 
i = 1  

Hence 

I Iq .~176 <-m "llq. - gll, , 0 .  

Since we can choose (gk)~=, on R (/z) which satisfy the conditions of Lemma 21, 

there is for each k a sequence of polynomials qk on R ~' for which 

(31) Ilqk.om - gk o~ IIBv , 0 .  

(31) together with Lemma 21 imply Lemma 22 as well as the second part of the 

main theorem. We thus have proved the main theorem for the case where/~ has 

a full dimension. 

In the general case, let us assume that dim R ( / z ) =  l and l <  m. Since 

0 E  R(/z), there is a linear mapping ~b from R m to R I which is 1-1 on the 

subspace M(/~) spanned by R(p.). Let r = ~b IMt~). For each S E c~ define 

a vector ~(S) in R t by s~(S) = r/z(S). Thus a vector ~: of l N A '  measures 

is defined and ~ has a full dimension. r induces a 1-1 mapping 

§ :(B(P-),II II,,)--*(B(~),II II~) such that for each / z ' E B ( / z )  

~ ( ~ ' )  = r  r r = ~(~ ' (s) )  

Define on r (R( /x ) )  a function g by 

g(x)  = / ( T - ' x ) .  

Then g o ~ = [ o/z and for each /x' E B (/x) 

(32) g o ( §  = f o ~,,. 

V S E ~ .  

LEMMA 23. f is continuous at ~ if and only if g is continuous at ~. 

PROOF. Assume that f is continuous at /~. Let e > 0, and choose a 6 > 0 

satisfying 
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(33) /.~'E B(~ ,  8) ~ lifo ~ - f  o ~'llBv < ~- 

Let 0 < a  < 8/ll~-'ll, For each ~:'E B( r  

II ~ - ' r  §162 =< II § lie - r < 8. 

Therefore § E B(p~, 8), and by (32) and (33) we have 

I l g o r 1 6 2  < ~, 

i.e., g is continuous at ~:. The proof of the other direction is similar. 

REMARK. Lemma 22 holds also in the case where ~. does not have full 

dimension. Since if f ~  E pNA then g o ~ E pNA and for the game g o ~c 

Lemma 22 is valid, thus there are polynomials (q,):=~ on R ~ with 

(34) I l q - ~  ~ ,0 .  

Defne  for every x E R % p, ( x ) =  q. (@x). Since @ is linear q, (@x) (and hence 

P, (x)) is a polynomial in x. On the other hand p, o/z = q, o ~:, thus replacing in 
(34) q.o s r by p,o/z  and g o ~: by f o/x we get Up~ ~ _ f o ~ Ibv ~  o. 

EXAMPLE 24. We present here an alternative proof for the fact that the game 

v., defined in example 9.4 of [2, p. 78], is not in pNA. v is defined as follows: Let 

I = [0,2] and let ~ be the o--field of Borel subsets of I. A is the Lebesgue 

measure on I and the measures AI, A2 in N A  ~ are defined by 

A,(S) = A(S n [0, 1]), S E c~, 

x~(S) = x(S n [1,2]), SE<g. 

Let p. = Az-A, and v = l /z [ .  

PROPOSITION 26. V is not in pNA. 

ProoF. Define f:R2--->R ~ by f((x~,xz)) = Ixz -x~ l ,  then v =fo(A~,A2). We 

will show that f is not continuous at (A~, A2). For each integer n we define A ~ and 

/~" by 

A~(S)=-ff--Z~_IA(SN[1,2-1/n]), /~" = A , - A L  

It is clear that (A~, A~)E B((A,,A~)) for each n, and 

II(A,,A~)-(A,,A~)II~ ,0 .  
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But, as will be shown, H[/~ I - Iv , "  I llav > �89 for n > 3. For that purpose we define 

for every n > 3 

A ~ = [  1 - k n '  1 - k - i ] n  , k = l , . . . , n ,  

C "  = [ 2  - l/n, 2 ] .  

Let f~" be the chain f / " : O  = Sg_C S~' _C... _C S~, = L where 

S ~ = A T U C " ,  S ~ = A T U B T U C " ,  

9~-~= A 7 0  [,.J B7 U C" and S~i = A ,  O B7 U C"; 

IIl~, I-I~," Ill~ ~ ~] [1~, I(s~,)-I ~" I(s~,)-I ~, Its~,-O + I~," Its~,-O [ 
i-1 

I ' "- '1  
= i=l s n n(n  --1) 0 +  n ~ - q )  

n - 2 > 1  (n >3).  
n - 1 = 2  = 

Let us mention that for pNA'  which is defined in the same way as pNA but 

with the sup norm (instead of the variation norm used for pNA),  we can 

characterize set functions of the form [ o/~ in pNA'  similarly to the one for pNA. 

First we define the continuity of [ at/z, with respect to the sup norm as follows: 

For each e > 0  there is a 8 > 0  s.t. for each v E B(/x, 6), I1[o~,-[o ~lls.p< e. 

Then, we can prove the following: 

PROPOSITION 27. [~ ~ pNA ' if and only i f [  is continuous at iz (in the sup 
norm). 

The argumentation of the proof is the same asthat  of the proof of the main 

theorem, and in fact is much easier. In this way, we also get that for [ o lz E pNA'  

there exist polynomials p, on R" ,  for which 

I Ip ,~176 , 0  as n ~ .  sup 

Thus, together with the Stone-Weierstrass theorem we get 

PROPOSITION 28. f o I~ E pNA '  iff [ is a continuous [unction on R (l~ ). 
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Finally a similar character izat ion for games f o/x in p N A D  can be stated (for 

the definition of the space p N A D  see [2, p. 253]). For  the space p N A D  we use 

the diagonal variat ion norm I1" Iio which is defined to be the limit of II" I1, as 8 

tends to zero (for the definition of I1" I1, see [2, p. 262]). 

PROPOSmON 29. Le t  f o I~ be in B V. Then f o tz is in p N A D  i f f f  is continuous at  

I~ (in the diagonal  variation norm).  
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