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A CHARACTERIZATION OF
VECTOR MEASURE GAMES IN pNA'

BY
YAIR TAUMAN

ABSTRACT

We give a complete characterization of games in pNA of the form fo u (where
 is a vector of finite number of non-atomic probability measures, and f is a real
valued function on the range of . with f(0) = 0). Specifically, we show that fo u
is in pNA iff “f is continuous at p” (the definition of the latter is given in the

paper).
1. Introduction

We begin with a few definitions, taken from Aumann and Shapley’s book [2].

Let (I, €) be a measurable space which is isomorphic to ([0, 1], 8) (the unit
interval with its Borel subsets). A set function (or game v) is a real valued
function on € such that v(&)=0. For each game v define ||v|jsv by ||v[sv =
sup||v [la, where the sup ranges over all chains Q of the form Q: = S,C S, C
- C8 =18 €% and ||vlo =22 | v(Si+1) — v(S)|. Denote by BV the set of
all games v with [jv||sy <. (BV,| |sv) is a norm space (even Banach one).
Denote by NA the set of all non-atomic measures on (I, €), by NA ' the set of all
probability measures in NA, and by pNA the closed linear subspace of BV
spanned by all powers of NA' measures.

The space pNA plays a central role in the theory of non-atomic games. In [2],
Aumann and Shapley proved the existence of a unique value on pNA and
presented a formula which enables us to compute the value for games in pNA of
the form f o u, where p is a finite vector of NA measures, and f is a real function
defined on the range of w, with f(0) =0. Therefore it is natural to ask which
games of the form fou are in pNA?
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Another motivation for characterizing the games fou in pNA arises from
market games. Those games were first treated deeply by Aumann and Shapley in
Chapter 6 (An Application of Economic Equilibrium) of [2], and then by
Aumann and Kurz [1], by S. Hart [5] and by others. The prominence of market
games in pNA is illustrated by the fact that every such game has a unique
member in the core which coincides with the value of v and with the unique
competitive payoff distribution (see [2, proposition 32.3], p. 186).

In fact, the games of the form fou, where u is a vector of finitely many
measures in NA, and f is continuous, concave and homogeneous of degree 1 on
the range of u, are the market games of finite type where the utility functions are
not necessarily differentiable. Therefore a characterization of games fou in
PNA leads to a characterization of all market games in pNA of finite type.

A characterization for the case where u is a scalar measure in NA' is given in

[2]:

THEOREM C [2, p. 25]. Letu € NA' and let f be a real function on [0, 1] with
f(0)=0. Then f o is in pNA if and only if f is absolutely continuous on [0, 1].

A characterization for the case where p is a scalar signed measure in NA has
been given by E. Koblberg [6]. He proved the following

THEOREM. Let p be in NA with range [ —a,b] where —a <0<b; let f be a
real function on [ — a, b] with f(0) = 0. Let g be the function defined for each x # y
by

8 y)= (& +a)(y —b) LI,

Then fou is in pNA if and only if f is continuously differentiable on the open
interval (—a,b), g(x,y)—0 as x—>—~a and y - b.

In the case where p is a finite vector of measures in NA' no characterization
has heretofore been known. In [2] the authors introduce two sufficient conditions
(neither of them necessary) and one necessary condition (which is not sufficient)
for fou to be in pNA. The sufficient conditions are

THEOREM B [2, p. 23]. fou isin pNA if f is continuously differentiable on the
range of u, and f(0)=0.

ProrosiTioN 10.17 [2, p. 92]. feu is in pNA if f is a continuous and
non-decreasing function in R} with f(0) =0, and for each 1 = i =< n the derivative
df/3x; exists and is continuous whenever x; > 0.
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The necessary condition, which follows from proposition 24.1 of [2] (p. 157), is
as follows:

THEOREM. If fop is in pNA, then almost everywhere along the diagonal
[ (©0), (1)), f has, for each S € €, a derivative in the direction of u(S).

In this paper we introduce a complete characterization of games fou (u is a
vector of finitely many measures in NA') in pNA. For that purpose we need a
few more definitions.

Define a norm | ||, on the linear space NA™ (the set of all vectors of NA
measures having m components) by

o= G tm) S il = 2 v

Let u be in NA™. Denote by R(p) the range of p, i.e.,
R(p)={u(S)|S € ¢}.
Define B(p) and B(u, €) for each £ >0 by
B(n)={r €ENA™|R(»)=R(u),
and
B(u,e)={v€Bu)|ln - vl <e}.

Fix g in (NA")™, and fix a real function f on R(n) with f(0)=0. Define an
operator Ty :(B(u),| =)= (BV,| [sv) by

T,(v)=f°w.
DErFINITION 1. We will say that “f is continuous at u”” if T} is continuous at

p. In other words “f is continuous at . if for each £ > 0, there exists § > 0 such
that

vEB(,8) > fou—fovlsw <e

We are ready to state our main result.

THEOREM. A necessary and sufficient condition for f o p to be in pNA is that f is
continuous at .

In the course of the proof of the theorem two other properties of vector
measure games in pNA are established:
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PropERTY I. If fopu is in pNA then there exists a sequence of polynomials
(P-)7-1, all of them on R™, such that ||p.op —feopllsv — 0.

PropERTY II. If fou is in pNA then fov EpNA for each v € B(w).
(Therefore T; is continuous at each point of B(w).)

2. The proof of the theorem

We will first prove the theorem for the case where the range of &, R(u), has
full dimension, i.e., where R (u) contains a ball in R™. (Recall that u € (NA")",
and f: R(u)— R" with f(0)=0, are fixed.)

a. The condition is sufficient

Let us start with the idea of the proof. Assuming that f is continuous at u, we
will prove that fou is in pNA by showing that one can approximate fou by
games g o u where g is continuously differentiable on the range R(x) of ¢ and
g(0) = 0. For that purpose we will smooth f by averaging it, at each point x (in
R(n)), over a small cube close to x. More precisely, for each 0<8 <1 and
x €ER(u), define f°(x) by

®  P@m | A= B0) - [ fenar0)

where C is a cube of volume a™, contained in the interior of R(u ), and A is the
Lebesgue measure on R™. (We subtract the term (1/a™) [,ecf(8y)dA(y) in the
definition of f* to obtain f°(0)=0.) Of course we first have to justify the
definition of f* by proving that the above integrals exist. Indeed, we prove that f
is continuous in the interior of R(u) (Lemma 4). Then we prove that f° is
continuously differentiable on R (u) (Lemma 7); and hence from theorem B of
[2] we have that f?  u € pNA. Now, we use Lemmas 8 and 9 below, and the fact
that f is continuous at u, to prove that ||f> e —f o u |lsv — 0 as § —0. Together
with the closedness of pNA (in the variation norm) we then obtain that f o u is in
pNA, as claimed.

LemMa 2. For a given nin (NA')™ and x in the relative interior of R(n), the
following holds: For each & >0 there exists 8 >0 such that for each y € R(u)
with™ |y — x| < &, there are T and S in € such that

n8)=x, M=y, [nSATD)|<e

* In the variation norm.
" On an Euclidean space, || || denotes the Euclidean norm.



Vol. 43, 1982 VECTOR MEASURE GAMES 79

Proor. First we will prove the lemma for the case where R(n) has full
dimension. Let € >0 be given and let M be a real number satisfying || z|| = M for
each z € R(n). There exists &, > 0 such that the ball B(x, ¢,) (with center x and
radius ;) is contained in R(n). W.l.o.g. (without loss of generality) we can
assume that ||x|| = 1.

(a) For each ¢,, 0< ¢,< ¢, and for each z € E™ with ||z || < &, there exists x,
and y, in (£,/2¢,)R (n) for which z = y, — x,. Figure 1 illustrates the situation. A
and B are the intersection points of dB(x, £;) with the line connecting x and
x + z. The points x, and y, are on the intervals [0, A] and [0, B], respectively,
and the line containing the interval [x,,y,] is parallel to the one containing
[A,B). If t =||z|/2¢, then x, =t A and y, =tB. Therefore x, and y, are in
(Iz[l/2€:)R(n); and since ||z || < &2, x, and y, are in (e,/2¢,)R (7).

Fig. 1.

(b) Obviously, for each &,> 0 sufficiently small there exists £;> 0 such that
B(x, £5) C (1 —es)R(n). This, of course, remains true if we replace £; by any
smaller positive number.

(c) Let us choose ¢;> 0 and &£, > 0 such that (b) holds and ¢s/¢, + (1 —g4) = 1.
(d) Choose 8, 0<8 <min(es, € * £,/M) small enough such that for each
ZER™

)
z 6281 R(n)> ||z||< €.

Let y € B(x, 8). Denote z =y —x. From (a) and (c) there exist x, and y, in
(86/2¢,)R(n) for which z =y,—x,. (d) implies that |lx,[|<e; and hence
x —x; € B(x, &5) and so by (b) x — x; €(1 — £))R(n). Therefore there is S; € €
such that
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©) fi=(—¢4) xs, > Ji1frdn = x — x,. (Here yxs, is the characteristic function
of S,.) Moreover, since x, and y, are in (8/2¢,) - R(n) there are measurable sets
Sl and S2 with

) f:=(8/2¢1)" xs, > [1f2dn = x, and

@) f1=(8/2&))" xs, > J1fidn = y:.

From (c), and the choice of 5, we obtain
h)0=sfisfitfisfitfitfi=82e+82e,+(1—e)=1.

To complete the proof of Lemma 2 we need now the following lemma:

LemMMA 3. Letny bein NA™; and let g., g, ..., g. be n measurable functions
defined on I, satisfying

1) 0=g(@)=1 foreach1=i=nandeacht€l,

) GQEGE =g
Then, there are n measurable sets Ty,---, T, with T,C T, C -+ C T, such that

77(T1)=j gid"l’ i=1,”"n'
1

Lemma 3 is an immediate consequence of the Dvoretsky-Wald-Wolfowitz
theorem [4]. For a proof see lemma 44.1 of {2, p. 259].

From Lemma 3 and (h) we deduce the existence of measurable sets T, T; and
T, with T:C T,C T; and

2(T5) = j fadn =x —x,
n(T)= [ G+ fin =x -z 4y,

n(T= [ Gt fitfadn =x+y.
Define T and S by

T=T, S=T,U(T.\T)).
Then

n(MN=x-x;+y,=x+z=y,
n(S)=x and N(TAS)=n(T\T)+n(T.\T).
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But

- b M<E
||71(T1\T3)||""Y1"<2£1 M<2

and

[a(TA T = llx.||<§ .

Hence ||n(T A S)|< e and the proof of Lemma 2 is completed for the case
where 7 has full dimension.

Assume now that [ is the dimension of R(n) and I < m. Since 0 € R(n) there
is a linear mapping ¢, from R™ onto R, which is one to one on the linear space
M(n) spanned by R(7n). Let 7= IM(,,). Define a vector measure ¢ of
dimension ! by £(S) = 7(n(S)) for each S in €. Let x be in the relative interior
of R(n), then 7x is in Int R(£) (the interior of R(¢)). Now let € >0. 77" is
continuous on R(£), hence, there is B >0 s.t. for each z € R(£)

3) lzl<B ="zl <e.

Using the first part of the proof, we have & >0 s.t. for each y € R(n) with
|7y — mx|| < & there are T and S in € for which

™ =¢(S), ty=€&T) and [[£(SAT)<B,
or V
x=n(S), y=n(T) and [£SAT)|<B.
Therefore (3) implies || 7 (S A T)|| < ¢, and the proof of Lemma 2 is complete.
LemMA 4. fis continuous in Int R(u).

Proor. Let £ >0. From the continuity of f at u, there is >0 s.t.
v € B(u, B) implies

“ Ifor —forlsy <e.
Let x be in Int R(x). By Lemma 2 there is § >0 s.t. for y € R(u) with
0<|ly —x[|< & there are measurable sets T and S with

x=u(S), y=wu(T) and 0<|u(SAT)<B2m.

Let us fix now the vector y and the corresponding two sets S and 7. W.l.o.g. we
can assume that y# u(I). Denote g =37, u, where w =(u, "+, m) and
consider two cases.
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I. @(T\S)=0. In this case we choose S, € € such that
S CU\TW\S, p(So)=0 and
Soand S\ T have the same cardinality.
We use now the following theorem:

THEOREM 5. Any uncountable Borel subset of any complete separable metric
space, when considered as a measurable space (with the o-field of the Borel
subsets), is isomorphic to ([0,1], B),

(For a proof, see Mackey [7].) Choose an automorphism 8 of (I, €) s.t.
6S,=S\T, 0(S\T)=S, and
Ox =x for each x € S,U(S\T).

Define a vector measure v by v = 8 * u (i.e., ¥(S) = u(6S)foreach S € €). v is
in B(u) and

=9l = 25 D=l = 5 s = 0 % sl

=3 sup [ (A) = (BA) = (A°)+ e (6A7)]
where A ° is the complement of A (A € €). From the definition of 6 we get

e = vl = 35 sup (11 (A N(S\T)) = we(8A N (S\T))

—mi(A°NES\T)+w (6A° N (S\T)].

Hence

I = »h = 5, sup [ (A N (S\T)+ (64 N (S\T))

=3 2 (s\T)<2m -5-‘3—=ﬂ.
i=1 m
Therefore, by (4) we have ||fop — fov|sv < &, which implies that

[f((T) = f(n(S)]<e,

or

If)-fx)l<e
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The proof of the lemma for case I is thus complete. The case where g (S\T) =0
is analogous.

II. a(S\T)>0 and a(T\S)>0. Apply again Theorem 5 to get an
automorphism 6 of (I, €) satisfying

6(T\S)=S\T, 6(S\T)=T\S and
6x=x  foreachxZSAT.
The proof of Lemma 4 is completed now, in the same fashion as case I.

DEerFINITION 6. Let C be the cube in R™ with center u(I)/2 and side a
defined by C =[—a/2,a/2]™ + n(I)/2, where a is a small positive number for
which C is contained in Int R (i). For each 0 < 8§ <1 and x € R () define f*(x)
by

O PO ] _fa-ox+spam-gx [ fe-nao)

ar

Notice that f° is defined on an open neighborhood D of R(u). Also notice that

the two integrals in (5) are well defined; since f is continuous on Int R (u) and for

each x € R(u)and 0 < 8 <1 the cube (1 — 8)x + 8C is contained in Int R ().
Obviously for each x € R(u), f?(x) can be written as

1 (1-8)x,+8(1/2+a/2) 1

Or@=zg= [ [T ey den -k [ 16 i)
(1-8)x;+8(1/2—af2) yEC

Since (1-8)x+6:C is contained in Int R(w), f° has continuous partial

derivatives at x. But this is the case for every x € R(u), thus f° is continuously

differentiable on R(u)." Hence

LemMA 7. For each 0< 6 <1, f* is continuously differentiable on R (w.).

Our next purpose is to prove that || f2 o — fou |lsv — 0. For this we need the
following two lemmas.

LemMmA 8. f is continuous at 0 and p(I).

' The concept of continuous differentiability of a real function f, on a convex set X contained in
R, is defined as follows (see [2, p. 22]): A vector z is said to be X admissible if z = x — y for some x
and y in X. Let f be a continuous real function on X. We shall say that f is continuously
differentiable on X, if for each X admissible z there is a real function on X which equals the
derivative df(x + hz)/dh (this involves the assumption that the derivative exists) at each point x in
the relative interior of X, and which is continuous at each point in X.
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PrROOF. Assume that x, =0 as k - «, and x, € R(u) for each k. We choose
S € € s.t. 1(S«) = x.. Theorem 5 enables us to select A, € € with A, N S, =
and p(Ax) =0 together with automorphisms 6, for which

OkSk = Ak, BkAk = Sk and
0x =x foreachxZ A, U S,.

Foreach k, 0%t € B(u)and ||u — 0%u [lav —>0. (The proof is similar to the one
given in Lemma 4.) Let ¢ >0. f is continuous at u, hence for large k

Ifer —fo(Oin)lav <e,
therefore | f( (Se)) — f( (AL))| < &, i.e., | f(xc)| < &. So f is continuous at 0. The

continuity of f at u(I) is proved in a similar way.

LEMMA 9. Letn €(NA')" and let S, S, be two measurable sets such that S,
and I\ S, are both uncountable sets and S, C S,. Then for each 0< 8 <1 and for
each y € R(n) there is a vector measure 7’ such that

7) n’ € B(n,2m3),
8 17 (S)=(1-8)(S)+ dy foreach S € €withS, C S CS..

ProoF. Let A and B be two uncountable subsets of S, and I'\ S, respectively
such that

©® n(A)=n(B)=0.

Let y € R(n). Choose S, € € such that S, and I'\S, are both uncountable sets
and

(10) n(8,)=y.
Apply Theorem 5 to have an isomorphism 6: A U B — I such that
(11) 0A =S, and 6B =1I\S,.
For each 0< 8 <[ define the vector measure n” by
12) 7’ (S)=m(SNAUB)))+(1-8)n(S), foreachSeE<E.
Since for each TC A UB and each T CI\(A UB)

n’(T)=6n(6T) and n*(T)=(1-8)n(T),

we obtain R(n”)= R(%). Now by the equation
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7’ (S)—n(8)=5[n(6(S N (A UB))—n(S)]
we have
In? —nl=2ms.
Finally, if § € € obeys S, C S C S, then by (10), (11), and (12)
7 (S)=8n(6(S: N A))+(1-8)n(S)

=n(0A)+(1-8)n(S)

=81(S,)+ (1= 8)n(S) =8y +(1—8)n(S).
The proof of Lemma 9 is thus complete.

Lemma 10. For each € >0, there exists 0<8,<1 s.t. for every 0< 8 <&,

If*en —=fomllsv <e.

Proor. Let £ >0 be given. Because of the continuity of f at u, there is r >0
s.t. for each v € B(u,r)

(13) Ifer—forlsv<ef2.

Let Q be an arbitrary chain : 3= S8,C S, C -+ C S« =1 of measurable sets.
W.l.o.g. we can assume that S, and I'\S,_, are uncountable. It is sufficient to
prove that |[fou —f°oulla<e. For each 8§, 0<8ScQjdo!-m and for each
y € R(u) we have, according to Lemma 9, a vector measure p” in B(u,2md)
s.t.

(14) 1-8)u(S)+d - y=un’(S), i=1,--, k-1
Since 0 <2mé <r we have by (13)

(15) fom—Ffomllav <el2.

On the other hand

feom—fomla= 2: o (Sin) = f(u(sia)) = fo (S ) + f(e (S))

=2 2 f,ec F(A =8 (Siv) +8 - y) = f((Siv))

—f1=3)u(S)+ 8 - y)+f(u(S))]dA(y).
Thus by (14)
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[fPem~fourlla
S ok T |07 (S) = (Sid) = Fw (S)+ F (S A )

b [ =9+ 8 9) - @)

v [l ylao)

The first summand is bounded by ||feu —fou’|lsv and according to (15) it is
smaller than ¢/2. By Lemma 8 there exists §,, 0<§,<1 s.t. for each §,
0< 8 <8, the last two summands are together smaller than £/2. Define
8o = min(8,,7/2m) to complete the proof of Lemma 10.

b. The condition is necessary

As in the first part, we first start with the idea of the proof. Assume that fo u is
in pNA ; our purpose is to prove that f is continuous at i. From the definition of
pNA there are polynomials (p,):- and vectors of NA' measures u" s.t.
|paep™ —foullav —0 as n tends to . Define

R" ={x ER((u, p"))| t:(x) E C}

where t,(x) is the projection of x on R(u) and C is defined as in Definition 6.
On R" we choose probability measures A, and we define for each n and
0< 8 <1, the function f% on R(u) by

fi)= [ fa=om+5-0o0an0)= [ 6 1)dn ).

In fact, we will choose the A, in such a way that f3 is independent of n and thus
we can denote f° = f. In order to prove that the above integrals are well defined
we prove that f is continuous on Int R (u ) (Corollary 15). Then we conclude that
f? is continuously differentiable on R(u). Define for each n and 0 < 8 <1 the
function p% on R(u") by

pﬁ(x)=f , pn((l—S)x+8~tz(y))d/\n(y)—f D (8- 6(y))dra (),
yER"” yER"
where t,(y) is the projection of y on R(u"). We prove (Lemma 19) that

(16) lprep”=foulsy —>0

uniformly in 0 < & < 1. In addition we prove (Lemma 20) that for each n
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a7 lpnop”=pron™llsv —>0,

and thus (16), (17) and ||p. o " = f o p [l5v —> 0 imply

If?*opm=foplev ——0.

We can thus approach fou by f? o u where f° is continuously differentiable on
R(p). Using the fact that the polynomials, with m variables, are dense in’
C'[R(n)] we prove (Lemma 22) that one can approach fou by g,ou where
(g+)n-1 are polynomials on R™ (and so Property I is proved). Now, based on the
existence of such (g. e u)»-: we can complete the proof of the second part, as
follows.

Lemma 11. Any polynomial p on R™ is continuous at .

Proor. It follows immediately from the fact that BV with the variation norm
is a Banach algebra (see proposition 4.5 of [2, p. 29)).

LemMma 12. Letn €(NAY)™ Then, for each v € B(n) and for each chain Q,
Q:F=8,C S C:--CS. =Iof measurable sets there exists a chain QO*, Q* : J =
S5CSIC---C St =1 of measurable sets s.t. for each i, 1<i<m,

v(S)=n(S%).
(Hence, for each vE B(q), [[fev|sv =f° nllsv-.)

The proof of this lemma is due to A. Neyman [8].
Now, assume that there are polynomials g, on R™ with

lguon = fomloy —>0.
Then for a given £ >0 there is an N s.t. n > N implies
(18) lgion—forlsy <e/3.
By (18) and by Lemma 12, for each v € B(u) and for each n > N
(19) lgnov—fovllav <e/3.

Let no> N be fixed. By Lemma 11, there is 6 >0 s.t.

* C'[R(u)] is the set of all continuously differentiable functions f on R (), with the norm

I H = 1£ 1l + 2 0 Bo

where f is df/dx, in Int R(u), and is the appropriate continuous extension on the boundary,

"f"o = maxxeR(u)If(x)l .
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(20) v EB(p,8) > |8t — 8no ¥ lav < /3.
Therefore by (18), (19) and (20), for any v in B(u, 8)

"fo.u —fo’/”BV s“fo“ _gm)°“||BV+I|g~.°FL _g"ooV”BV+”gnu°V_f°V”BV
< g,

and the proof of the second part is completed. Notice that Property II follows
immediately from (18). It remains now to prove the existence of (g.):-, on R™
with |[g. o = fopflav —0.

DEerFINITION 13. A set function v is said to be absolutely continuous if there is
a 0 € NA' s.t. for every ¢ >0 there is a >0 obeying for every chain () and
every subchain A of Q, |[g|s=8 = [[v|x = & (in this case we write v < ). The
set of all absolutely continuous set functions in BV is denoted by AC.

LEMMA 14. Let £ €(NA") and let g be a real functionon R(£). Ifgo 6 EAC
then g is continuous in RelInt R(&) (the relative interior of R(£)).

Proor. Let x be in Rellnt R(£). g° £ € AC implies the existence of a
measure v € NA' with go¢ <. Let ¢ >0 be given. There is an a >0 s.t. for
each subchain A

@1 Ivlh<a = lgeéla<er2.

Since x €Rellnt R(§¢) and R(¢ v) is convex, there is x, €[0,1] for which
X =(x,x,) is in RelInt R(£, v). Applying Lemma 3, we have § >0 s.t. for each
§ ER(¢ v) with |§ —x|| < 8 there are sets S and T in €, such that

22) E=(&v)(S), 7= v)T) and [(£r)(SAT)<e
Denote
U2 ={y €REv)|ly - %] <8},

and let P be the projection of R(& v) on R(£). P(U}) contains a neighborhood
U?% of x (with radius 8,) in R(¢). Hence, for each y € R(¢) with [y — x|/ < §,
thereisa y in P~'(y) N U% and there are measurable sets S and T satisfying (22).
Therefore

(23) x=£(S), y=¢&(T) and v(SAT)<a.
Define now two subchains A, and A; by

AlsgSU’T, Az:TgSUT,
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and replace A in (21) once by A, and once by A.. Then together with (23) we have
|g(6(SUT)—g(S)l<el2,
|g(£(SUT)—g(&(T)l<el2.
Hence, for each y € R(&¢) with ||y — x| < 8,
|8(x)—g(y)| =g (&SN~ g&(T))
=[g(&(S)—g(((SUT))|+|g(&(S U T)) - g(&(T)
< €.
COROLLARY 15. The result of Lemma 14 is valid if we replace AC by pNA.

Proor. This is an immediate consequence of Lemma 14 above and of
Corollary 5.3 of [2, p. 36] which asserts that pNA C AC.

DeriniTioN 16, For each subset S of any euclidean space we denote by As
the Lebesgue measure on the linear manifold spanned by S.

LemMA 17. Let A be a compact and convex subset of R™. Let P be a projection
of A on R' for | <m, and assume that Apa (PA)>0. Then, there is a probability
measure v on A s.t. vP"' is the normalized Lebesgue measure on PA.

Proof. For every x in PA denote
A, =P '{xhNA, A=A (A)

If dim PA <dim A then, from the convexity of A, for almost every x in PA
(with respect 10 Aza) A, > 0. In this case we define a function f on A by:

1/A, a€ A, and A, >0,
fla) =
0 a€ A, and A, =0.

It is easy to verify that f is A, integrable. Define now a measure v on A as
follows: For every measurable subset S of A

V(8) = (A (IP 4 f _f@dia (@),

v is a normalized measure and vP~' is the normalized Lebesgue measure on PA.
In the case where dim PA = dim A, the measure v is simply defined by

1
Aa(A)

I\A.

V.—_‘
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The proof of the lemma is then complete.

By Lemma 17, for each n there is a normalized measure A, defined on R, s.t.
At ' is the normalized Lebesgue measure on C. (Recall that R ={x€
R((p,[,l.")), 1,(x) € C} where t,(x) is the projection of x on R(u), C is a small
cube in Int R(u) of the form [—a/2,a/2]™ + u(I)/2 and

Ipaop™ = fourlsv —20)

For each n and 0< 8 <1 define on R(u) a function f; by

fi= [ H@=83+8- 400~ [ 16 60Ddh )

By Corollary 15, fi is well defined. In fact, from the choice of A., fr is
independent of n since

R")

fe=[ - +5 )6 Pldai')

and thus

49 fi = (=9 +5-9)=16 - )

where A is the Lebesgue measure on R™. We can then write f* instead of f;. By
(24) and by Lemma 7 we have now

COROLLARY 18. Foreach 0< 8 <1, f’ is continuously differentiable on R (n.).

LemMmA 19. For every € >0 there is an integer N s.t. for each n > N and
0<é<1

e —proplsv <e.
ProOF. Let 0< & <1 be given. Let Q be a chain
Q:®=S()gslg"'g5k=1, Sjecg.
Following the definition of p; we have

1fPor—paop”la

@) = 3| [ 0= 8n(S)+ 8 LN~ - 8" (S +5-10)

—f(1=8)u(S)+8 - ti(y)+p. (1 =8)u"(S)+38 - to(y))dAa (y) | .
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For each y € R" there is a measurable set T, with y = (u, " }(T,), and for each
Lb0=sisk-1,
(1=8)xs.,,+8 - xr,=2(1—8)xs,+ 8 - xr,.
By Lemma 3, there is a subchain A
A:TPCTPC - CTY
s.t. foreach i, 0=i =k,
(s, w" W TE) = (1= 8) (") (S:) + 8 - (1(y ), Ay ).
This together with (25) imply

1f* e ~pron

(26) =2 fy o (TE) = pu (" (T2)) = f(r (TE) + po (" (TP)]dAn (v) |

The integrand on the right-hand side of (26) is bounded for each y € R" and
0<8<1by|fom —p.op"|lsv which tends to 0 as n — . Hence the proof of
the lemma is completed.

Lemma 20. For each n, ||p.op” —piop” [sv —0.

ProOOF. For each n, x ER(u") and 0< 8 <1

P~ [ [ 8)5 8 10D~ p (5 5O ).

The integrand p,((1—8)x +8 - t:(y))—p. (8 - t:(y)) can also be written as
p.((1—8)x)+ 8 - Qa(t(y)), where Qi(t.(y)) is a polynomial in t(y) with
coefficients which are polynomials in x and 8. Hence

P =P (=D 45+ [ Q)M O)
But qi(x)=f,er- Qi(t:(y))dA.(y) is a polynomial in x and §, and therefore
Pa(x)=pa(1—-8)x)+8 - qu(x).
Since R(u") is a compact set then
lpa=pall =0  on R(u")

or

[paepn™ —paop"| — 0.

sup §—0
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Since for a fixed n, each pi(x) (as a polynomial in x) has the same degree as
p.(x), and since on any finite-dimensional vector space all the norms are
equivalent (here we consider the space of all polynomials q with the same
number of variables as in P, and such that degq = degp.) then

lpren™ =ponllav >0
and the proof is complete.

LemMa 21. For each k there is a continuously differentiable function g on
R(u) s.t.

lgeop —foullsy — 0.

k —x
Proor. Since

@n 1pwo i = Fo bt llow — 0,

by Lemma 20, for each n

(28) ”Pﬁ°#"_Pn°M"”Bv E’O'
By Lemma 19
(29) fifPen—piopn”lsv —> 0  uniformly in0< 8 <1.

By (27), (28) and (29) we get

(30) ”fb"”_fWL”BV'&‘_TO’O‘

Since f® is continuously differentiable on R(u) (Corollary 18), the proof is
complete.

LEMMA 22. For each k there is a polynomial g, on R™ s.t.

lgeom —foplsv —0.

k—»x

Proor. The space (C'(R(n)),|| |l) is defined in the previous footnote.
Lemma 7.4 in [2, p. 42] asserts that the polynomials are dense in C'(R{u)). (The
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essence of the proof is given in Courant and Hilbert [3, p. 68].) Therefore, for
each g € C'(R(p)) there is a sequence of polynomials (g, )i on R™ for which

lg. - gl — 0.

Inequality (7.5) of [2, p. 43] asserts that

lgonlo=lgh & wD=m-lgl.

Hence
lg.on —gopllov=m-lg. — gl ——>0.

Since we can choose (g« )i-: on R{(u ) which satisfy the conditions of Lemma 21,
there is for each k a sequence of polynomials g5 on R™ for which

(1) lghen —gcopllsv —>0.

(31) together with Lemma 21 imply Lemma 22 as well as the second part of the
main theorem. We thus have proved the main theorem for the case where u has
a full dimension.

In the general case, let us assume that dimR(u)=1 and | <m. Since
0€ R(u), there is a linear mapping ¢ from R™ to R' which is 1-1 on the
subspace M(u) spanned by R(w). Let 7= |M(,L,. For each S € € define
a vector ¢(S) in R' by &(S)= 1u(S). Thus a vector ¢ of | NA' measures
is defined and ¢ has a full dimension. 7 induces a 1-1 mapping
#:(B@)ll )= (Bl 1) such that for each '€ B(u)

Tw)=§ S &S)=1(n'(S) VSEX

Define on 7(R(u)) a function g by

g(x)=f(r7'x).
Then ge¢é =fou and for each u' € B(u)
(32) go(in)=fop'"

LEMMA 23. fis continuous at p if and only if g is continuous at &

PrROOF. Assume that f is continuous at u. Let ¢ >0, and choose a § >0
satisfying
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(33) p' EBw,8) > fon—fopu'llav <e.
Let 0< a < §/||77"||. For each ¢ € B(§ a)
77 =3¢l N7 - &'l <o
Therefore 77'¢' € B(u,8), and by (32) and (33) we have
llgoé—goéllsv<e,
i.e., g is continuous at & The proof of the other direction is similar.

REMARK. Lemma 22 holds also in the case where u does not have full
dimension. Since if fou € pNA then ge£{EpNA and for the game go¢
Lemma 22 is valid, thus there are polynomials (g.);-, on R' with

(34) Igne€—go&llsv —0.

Define for every x ER™, p.(x)= q.(¢¥x). Since ¢ is linear g, (¢¥x) (and hence
P, (x)) is a polynomial in x. On the other hand p, o u = g, ° §, thus replacing in
(34) .o £ by poop and go£ by fop we get [|paop —fopls —0.

ExaMpLE 24. We present here an alternative proof for the fact that the game
v, defined in example 9.4 of [2, p. 78], is not in pNA. v is defined as follows: Let
I=[0,2] and let € be the o-field of Borel subsets of I. A is the Lebesgue
measure on I and the measures A,, A, in NA' are defined by

AS)=A(SN[0,1]), SEE
AS)=AGSN[L,2]), Se%
Let w =A,—A,and v =|u|.
PROPOSITION 26. v is not in pNA.
Proor. Define f: R*— R' by f((x1, x2)) = |x,— x,|, then v = fo(A;,A;). We

will show that f is not continuous at (A, A,). For each integer n we define A3 and
p" by

AY(S)=—2 TASN[L2=1/n]),  pt=d-AL

n—

It is clear that (A1, A3) € B((A,, A2)) for each n, and

IALAS) = (A, W) —20.
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But, as will be shown, ||| | —| " |[lsv >3, for n = 3. For that purpose we define
for every n =3

Az=[1—5,1—k_1], k=1,--+,n,

n n
=[1+u 1+k] k=1,---n,
C"=[2-1/n,2].

Let Q" be the chain Q" : J=85C S7C---C S3.= I, where
Si=A1UC", S3=AtUBfUCH

=<‘L;)1AI‘)U(U B.")uc" and s;i=(gA?)U( il B?)UC";

t=1

=

leul(sz-)—lu [(55) = | |(S5i-1) + | " | (S3i-0) |

.2

[

1 n—i
n n(n—l) O+n(n-—1)

3
N
[

é (nz3).

=
—

Let us mention that for pNA' which is defined in the same way as pNA but
with the sup norm (instead of the variation norm used for pNA), we can
characterize set functions of the form f o i in pNA' similarly to the one for pNA.
First we define the continuity of f at u, with respect to the sup norm as follows:
For each £ >0 there is a >0 s.t. for each v € B(, 8), ||[fou —fov|w<e.
Then, we can prove the following:

ProrosITION 27. fou € pNA' if and only if f is continuous at u (in the sup
norm).

The argumentation of the proof is the same as that of the proof of the main
theorem, and in fact is much easier. In this way, we also get that for fou € pNA'
there exist polynomials p, on R™, for which

lpron—foull—>0 asn—w

Thus, together with the Stone-Weierstrass theorem we get

ProPOSITION 28. fou € pNA' iff f is a continuous function on R{u.).
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Finally a similar characterization for games f o u in pNAD can be stated (for
the definition of the space pNAD see [2, p. 253]). For the space pNAD we use
the diagonal variation norm | -||p which is defined to be the limit of ||-||s as &
tends to zero (for the definition of |- |5 see [2, p. 262]).

PROPOSITION 29. Letfou bein BV. Then fouisin pNAD iff f is continuous at
w (in the diagonal variation norm).
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